The Burnside problem for semigroups
نویسندگان
چکیده
منابع مشابه
Yet Another Solution to the Burnside Problem for Matrix Semigroups
We use the kernel category to give a finiteness condition for semigroups. As a consequence we provide yet another proof that finitely generated periodic semigroups of matrices are finite.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn the Burnside Semigroups xn = xn+m
In this paper we prove that the congruence classes of A associated to the Burnside semigroup with jAj generators deened by the equation x n = x n+m , for n 4 and m 1, are recognizable. This problem was originally formulated by Brzozowski in 1969 for m = 1 and n 2. De Luca and Varricchio solved the problem for n 5 in 90. A little later, McCammond extended the problem for m 1 and solved it indepe...
متن کاملThe Restricted Burnside Problem
In 1902 William Burnside [5] wrote 'A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite'. In modern terminology the most general form of the problem is 'can a finitely generated group be infinite while every element in the group has finite order?'. This question was answered in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1975
ISSN: 0021-8693
DOI: 10.1016/0021-8693(75)90184-2